MATH PARENT GUIDE - UNIT 3

IMPORTANT CONCEPTS YOUR STUDENT SHOULD KNOW AND ACTIVITIES TO DO AT HOME
 FRACTION EQUIVALENTS

"I Can" Help My Student

- I can use and explain representations of simple equivalent fractions
- I can compare fractions with different numerators and different denominators

KEY WORDS TO KNOW

common fraction: a fraction where both the top and bottom are whole numbers
fraction: a number used to name a part of a group or a whole
denominator: bottom part of the fraction that tells the number of equal parts need for a whole equivalent sets: sets which have the same value and cardinal number increment: increasing by a specific amount
numerator: top of the fraction explaining the number of parts being considered
term: individual factors in an expression representing a product unit fraction: fraction with 1 as the numerator and any positive integer as the denominator representing one fractional part of the whole whole number: any number that is greater than zero and not divided into parts
What should my student already know before beginning this unit?
\checkmark Extend previous understandings about how fractions are built from unit fractions
\checkmark Compose fractions from unit fractions AND Decompose fractions into unit fractions
\checkmark Use the meaning of fractions and the meaning of multiplication to multiply a fraction by a whole number

Recommended Children's Literature

The use of children's literature is equally important as problems and deserves some attention. Use these books to enhance both language literacy and mathematical literacy. These books can be checked out at your local Atlanta-Fulton Public Library System www.afplweb.com

Fraction Fun by David Adler
If You Were a Fraction (Math Fun) by Speed Shaskan
Apple Fractions by Jerry Pallotta

My Half Day by Dorris Fisher
Inchworm and A Half by Elinor Pinczes
Working With Fractions by David Adler

MATH PARENT GUIDE - UNIT 3

FRACTION EQUIVALENTS

Important Concepts Addressed in this Unit

In this unit, students will develop an understanding of the following:

- Fractions can be represented visually and in written form.
- Fractions with differing parts can be the same size.
- Fractions of the same whole can be compared.
- Fractions with the same amount of pieces can be compared using the size of their pieces.
- Fractions can be compared using benchmarks like $0, \frac{1}{2}$, and 1 .
- Fraction relationships can be expressed using the symbols, $>,<$, or $=$.

Special Note: Constructing the idea that fractions are relationships, and that the size or amount of the whole matters, is a critical step in understanding fractions.

Sample Problems

Sample Problem 1: Making and Investigating Fraction Strips

Have students create and use fraction strips.
http://illuminations.nctm.org/LessonDetail.aspx?ID=
L540

Sample Problem 2: The Concept of Equivalency

All three of these rectangles are a different size; however, they all contain the same proportion of red tiles. Each is $\frac{1}{4}$ red however a different number of tiles make up that proportion of $\frac{1}{4}$. Students are then asked to write an equivalency statement similar to the one below, as well as record their work on graph paper.

How You Can Help Your Student

Interactive Learning Games

Virtual Fraction Bars:

http://nlvm.usu.edu/en/nav/frames asid 203 g 2 t 1. html?from=category g 2 t $1 . \mathrm{html}$

Equivalent Fractions:

http://illuminations.nctm.org/ActivityDetail.aspx?!D=80

Generate Equivalent Fractions by Using Fraction

Strips:

https://learnzillion.com/lesson plans/323

Exploring the Value of the Whole:

http://illuminations.nctm.org/LessonDetail.aspx?!D=L347

Eggsactly Equivalent:

http://illuminations.nctm.org/LessonDetail.aspx?!D=L338

Virtual Pattern Blocks:

http://nlvm.usu.edu/en/nav/frames asid 170 g 2 t 3 . html?open=activities\&from=category g $2 \mathrm{t} 3 . \mathrm{html}$

